The Role of an Er, Cr: YSGG Laser in the Placement of Immediate Molar Implants

Scientific and Clinical Rationale

Dental implants as tooth replacements have become a well-accepted mode of treatment with high rates of success and predictable outcomes. In recent years, much of the research by manufacturers and clinicians on dental implants has focused on fixture surfaces. The goal of new surface types, and/or surface microtextures, is to promote quicker and improved integration of the implant. While the possibilities of improving implantology along these lines are still being explored, a preliminary study suggests an almost twofold increase in bone-to-implant contact when using a microtextured implant surface. This goal is driven by patient demand for immediate tooth replacement. Accordingly, the direction of today's progress in implant therapy is to expedite the entire process and thus meet our patients' wishes.

Immediate implant placement has been well-documented as a sound clinical approach, with high success rates especially in the anterior region where implant form mimics the shape of the extraction socket. Threaded cylindrical and tapered root form implants work well and are often the clinician's preference. A review of the literature reveals that very little has been written about immediate implants placed in the molar region after extraction. Fugazzotto concluded that immediate implant placement in molar extraction sites would succeed predictably with the aid of regenerative materials. Molar implants are usually placed in a delayed process where the extraction site has been allowed to heal for a period of 3 to 6 months, depending on the bone quality at the site.

DENTISTRY TODAY • AUGUST 2018

Figures 1 to 6 illustrated by Rick Sargent.
Many authors advocate socket grafting to preserve ridge form. While this process appears to prevent collapse of the bony socket in the short term, long-term studies are not yet available to confirm the efficacy of this technique. Research by Lindhe, et al suggests that remodeling of the site will occur over the long-term. Lindhe's research suggests that the implant should be placed more toward the lingual wall due to resorption effects on the buccal aspect.

Placing immediate implants in the molar region has 3 apparent obstacles. First, the size and shape of the socket differ markedly from the size and shape of an implant, and there is inherently a greater "jumping distance" the bone must cover from the wall of the extraction socket to reach the surface of the implant. Second, it can be very difficult to achieve primary or rigid fixation in a molar implant site due to resulting anatomy or morphology after the tooth has been extracted. Finally, because of occlusal forces and chewing habits in the posterior, this would put posterior implants at greater risk for macro- or micro-movement, or premature "loading" due to mastication, and thus lead to fibrous integration and failure of osseointegration.

The purpose of this article is to propose a technique in which immediate molar implants can be placed routinely and predictably following extraction, ultimately reducing the time from extraction to final prosthetics. Indications for this treatment are molar teeth that can be extracted edatraumatically, leaving bony cortical walls intact. Pre-existing infection is not a contraindication, unless it has caused severe alteration to the morphology of the site, such as the loss of a significant portion of buccal or lingual cortical bone.

METHOD

Proper informed consent must be obtained, including discussion of the options to graft the socket followed by traditional delayed placement. The patient is then appropriately anesthetized, and the tooth is removed atraumatically. Caution should be taken not to achieve so much vasoconstriction that there is insufficient bleeding in the socket, which would inhibit normal clot formation in the area.

The Er,Cr:YSGG laser is used to initiate an osteotomy (Figure 5). This is where the Er,Cr:YSGG laser is of great benefit compared to conventional techniques. Traditionally, ostetomies are performed with burs, drills, or osteotomes. Molar extraction sockets present an anatomical form that makes it difficult to prepare an osteotomy. Traditional instruments such as burs and drills will slip, chatter, or misdirect from intended directional vectors. Additionally, vital anatomical structures, including the sinus and the mandibular canal, are in close proximity to molar sites and could be compromised. Using the laser, the osteotomy can be prepared precisely, conservatively, and without risk of harm to vital structures. The implant can then be placed with good primary stability.

In the author's experience, the actual amount of bone-to-implant contact is not critical, and in most cases the implant appears to be "floating" in the socket from a lateral view on the periapical film. The only factor that matters is achieving good primary stability (Figure 6). A study by Scarano, et al indicates the importance of primary stability in achieving sufficient bone-to-implant contact. Another study by Lioubavina-Hack, Lang, and Karling indicates that primary instability will lead to fibrous integration, causing molar implants to fail. Ideal placement of the immediate molar implant is similar to principles used for placement of implants in healed-molar sites. It is based on prosthetically driven principles; it is also based on established biological principles of placement of immediate implants in the anterior region in...
The patient presented with failed endodontic treatment on teeth Nos. 13, several months. (Figures 13 to 14). The tooth was surgically extracted without trauma to the bone due to use of the Er,Cr:YSGG laser. A Straumann 4.8 x 10 wide diameter platform implant was placed. Figures 7 to 10 show the periapical radiographs of the history and photos of the final result.

Case 2
The patient presented with failing endodontic treatment on tooth No. 19. The patient is a diplomat and primarily resides in Africa, and is only in the United States for 2 weeks during December each year. Teeth Nos. 19, 30, and 31 all required extraction and immediate implants due to failing endo. A porcelain-metal, winged, Maryland bridge-type prosthesis was made to temporarily replace tooth No. 19 and allow the patient to chew while the implant was osseointegrating. Teeth Nos. 30 and 31 were not loaded, and no temporary prosthesis was made for the lower right side. The patient returned in approximately 1 year. The Maryland bridge was removed, a solid abutment was torqued to 30 Ncm, and a definitive implant crown was fabricated (Figures 11 to 12).

Case 3
The patient presented with failing endodontic treatment on tooth No. 30. The tooth was extracted following the laser-assisted protocol as described in Method, and a permanent prosthesis was placed 6 months after the extraction. Further remodeling of the socket is expected over the next several months (Figures 13 to 14).

Case 4
The patient presented with failed endodontic treatment on teeth Nos. 13, 19, and 30. Tooth No. 30 was retreated

DENTISTRY TODAY • AUGUST 2008

IMPLANTS

with conventional endodontic therapy. Immediate implants were placed into the extraction sockets of teeth Nos. 13 and 19. Tooth number 13 was immediately loaded with a provisional restoration. Both implants integrated successfully; tooth No. 13 received a definitive restoration at 3 months and tooth No. 19 at 7 months. The patient discovered she had carcinoma of her thyroid gland 4 months after implant placement. Immediate molar implants necessitate jumping distances of greater than 2 mm.

CASE REPORTS

Case 1
The patient presented with a history of recent root canal therapy on tooth No. 19. She had carcinoma of her thyroid gland and 4 months after implant placement. The tooth was surgically extracted due to failing endo. A porcelain-metal, winged, Maryland bridge-type prosthesis was made to temporarily replace tooth No. 19 and allow the patient to chew while the implant was osseointegrating. Teeth Nos. 30 and 31 were not loaded, and no temporary prosthesis was made for the lower right side. The patient returned in approximately 1 year. The Maryland bridge was removed, a solid abutment was torqued to 30 Ncm, and a definitive implant crown was fabricated (Figures 11 to 12).

Case 2
The patient presented with failing endodontic treatment on tooth No. 19. The patient is a diplomat and primarily resides in Africa, and is only in the United States for 2 weeks during December each year. Teeth Nos. 19, 30, and 31 all required extraction and immediate implants due to failing endo. A porcelain-metal, winged, Maryland bridge-type prosthesis was made to temporarily replace tooth No. 19 and allow the patient to chew while the implant was osseointegrating. Teeth Nos. 30 and 31 were not loaded, and no temporary prosthesis was made for the lower right side. The patient returned in approximately 1 year. The Maryland bridge was removed, a solid abutment was torqued to 30 Ncm, and a definitive implant crown was fabricated (Figures 11 to 12).

Case 3
The patient presented with failing endodontic treatment on tooth No. 19. The patient is a diplomat and primarily resides in Africa, and is only in the United States for 2 weeks during December each year. Teeth Nos. 19, 30, and 31 all required extraction and immediate implants due to failing endo. A porcelain-metal, winged, Maryland bridge-type prosthesis was made to temporarily replace tooth No. 19 and allow the patient to chew while the implant was osseointegrating. Teeth Nos. 30 and 31 were not loaded, and no temporary prosthesis was made for the lower right side. The patient returned in approximately 1 year. The Maryland bridge was removed, a solid abutment was torqued to 30 Ncm, and a definitive implant crown was fabricated (Figures 11 to 12).

Case 4
The patient presented with failing endodontic treatment on tooth No. 19. The patient is a diplomat and primarily resides in Africa, and is only in the United States for 2 weeks during December each year. Teeth Nos. 19, 30, and 31 all required extraction and immediate implants due to failing endo. A porcelain-metal, winged, Maryland bridge-type prosthesis was made to temporarily replace tooth No. 19 and allow the patient to chew while the implant was osseointegrating. Teeth Nos. 30 and 31 were not loaded, and no temporary prosthesis was made for the lower right side. The patient returned in approximately 1 year. The Maryland bridge was removed, a solid abutment was torqued to 30 Ncm, and a definitive implant crown was fabricated (Figures 11 to 12).

DENTISTRY TODAY • AUGUST 2008

IMPLANTS

Immediate molar implants are a viable treatment alternative for patients requiring tooth replacement. While the basic biological principles exist to support this form of treatment and the author has achieved clinical success, controlled studies are indicated to verify this treatment modality.

Advantages...include fewer procedures, less cost, less morbidity, and positive psychological factors...

The author has observed the bone jump distance in a mesiodistal direction is often more than 2 mm. On another level, the success of immediate molar implants can be partially attributed to the use of the Er,Cr:YSGG laser. A study in rats by Kesler, Romanos, and Koren using an Er-YAG laser showed better osseointegration and faster bone healing than that achieved after conventional techniques using a rotary drill. The YSGG and YAG lasers have similar wavelengths: 2,790 nm and 2,940 nm respectively, so it is reasonable to presume that the two will have similar effects, although more clinical data are necessary to prove this. A possible cause for this is the bactericidal effect of laser irradiation on extraction sites. A number of published studies indicate that laser irradiation lowers the bacteria count in the affected area. Periodontal pathogens in the site can restrict osteogenesis, so lasers may aid in bone growth by reducing the bacteria that hamper it. Furthermore, laser surgery causes less damage to the surrounding areas. Regeneration of bone in the osteotomy site may then occur faster, with fewer original, compromised collagen fibers to regrow before osteogenesis can begin.

The other factor contributing to the success of this procedure is the stage of bone healing that takes place when the implant is installed and when loading begins. Conventional techniques dictate that a molar implant be placed in the socket at least 3 months after extraction to allow it to heal. However, in the first 4 months after extraction, substantial buccolingual and apicocoronal ridge reduction occurs, and osteogenesis slows down after 2 months. Placing an implant immediately does not allow bone resorption to occur and prevents soft connective tissue from forming instead of hard bone. The advantages of immediate placement and the complications it alleviates in the anterior region are well-documented; the case is similar for the posterior region, although the success of immediate implant placement is attributable to other factors as well.

CONCLUSION
Immediate molar implants are a viable treatment alternative for patients requiring tooth replacement. While the basic biological principles exist to support this form of treatment and the author has achieved clinical success, controlled studies are indicated to verify this treatment modality. Advantages of this technique include fewer procedures (one surgery and one surgical site only), less cost, less morbidity, and positive psychological factors, including the
patient's preference for not going "without a tooth." As surface texture and bioactive materials improve, the treatment time will decrease and prognosis for this technique will increase. Future controlled studies are indicated to compare this technique with traditional therapies. Additionally, implant design, particularly at the most apical extent of the fixture, could be developed to better support initial stability.

References

Dr. Singer has a private practice in the Washington, DC, and Alexandria, Va, areas. He is an assistant clinical professor in the Department of Surgery at George Washington University. He can be reached by e-mailing novasmiles@yahoo.com.

Acknowledgment
The author wishes to thank Daniel Shapero for assistance in researching this article.

IMPLANTS

It's Free. Just Ask for It!

Purchase any MIS implants in multiples of 5 (minimum purchase of 10) and receive one free CPS® complete prosthesis set with each implant.

CPS®

First time MIS user? Call 866-797-1333 or circle 44 on card